<u>Goal</u>: Define differential k-forms in IRⁿ, the exterior derivative and their basic properties

Recall: Given linearly independent [V., Va, ..., Vn] = IR"

det
$$\begin{pmatrix} v_1 & v_2 & \dots & v_n \\ 1 & 1 & 1 \end{pmatrix} = Volume \begin{pmatrix} v_3 & \dots & v_n \\ \dots & v_n & \dots & v_n \end{pmatrix}$$

n-vectors
in IRⁿ n-dimensional
parallelopipe

the conditionto

(Multi)-linear Algebra

$$R^{n}: \text{ Standard basis} \\ \left\{ \begin{array}{c} \left\{ e_{1}, \cdots, e_{n} \right\} \\ d_{ual} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \right\} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \right\} \\ \left\{ d_{ual} \\ d_{ual} \\ \left\{ d_{x_{1}, \cdots, d_{x_{n}} \right\} \\ \left\{ d_{x_{i}, \cdots, d_{x_{n}} \right\} \\ \left\{ d_{x_{i}, \cdots, d_{x_{n}} \right\} \\ \left\{ d_{x_{i}, \cdots, d_{x_{n}} \right\} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \right\} \\ \left\{ d_{ual} \\ \left\{ d_{ual} \\ d_{ual} \\ d_{ual} \\ \left\{ d_{ual} \\ d_{ual} \\ \left\{ d_{ual} \\ d_{ual} \\ \left\{ d_{ual} \\ d_{ual} \\ d_{ual} \\ \left\{ d_{ual} \\ d_{ual$$

Any linear functional $\phi: \mathbb{R}^n \to \mathbb{R}$ has the form $\phi = a_1 dx_1 + a_2 dx_2 + \dots + a_n dx_n$ We generalize this to multi-linear functions. Given 15 i. < i. « · · · · · we define $dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k} : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ as $(dx_{i_k} \wedge dx_{i_k} \wedge \dots \wedge dx_{i_k})(v_1, v_2, \dots, v_k)$ $= det \begin{pmatrix} dx_{i_{1}}(v_{1}) \cdots dx_{i_{k}}(v_{k}) \\ \vdots \\ dx_{i_{k}}(v_{1}) \cdots dx_{i_{k}}(v_{k}) \end{pmatrix}^{k \times k}$ Which is a k-linear alternating map on \mathbb{R}^{n} , FACT: { dxin A dxin A dxin } Isinciscon cinen forms a basis of the vector space of k-linear alternating maps on iR" denoted by Ak (iR")* Hence,

dim
$$\Lambda^{k}(\mathbb{R}^{n})^{*} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

E.g.)
$$n=3$$
, $k=2$ A basis for $\Lambda^{3}(R^{3})^{\#}$ is given by
 $\int dx_{1} \wedge dx_{2}, dx_{1} \wedge dx_{3}, dx_{2} \wedge dx_{3}$
Wedge Product
The following notion of "wedge product" Λ
generalizes the cross product X of vectors in \mathbb{R}^{3} .
 $(dx_{i_{1}} \wedge dx_{i_{2}} \wedge \dots \wedge dx_{i_{k}}) \wedge (dx_{j_{1}} \wedge dx_{j_{2}} \wedge \dots \wedge dx_{j_{k}})$
 $:= dx_{i_{1}} \wedge dx_{i_{2}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{j_{1}} \wedge dx_{j_{2}} \wedge \dots \wedge dx_{j_{k}})$
 $:= dx_{i_{1}} \wedge dx_{i_{2}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{j_{1}} \wedge dx_{j_{2}} \wedge \dots \wedge dx_{j_{k}}$
 $\frac{Remember}{(alternating)} : \begin{cases} dx_{i} \wedge dx_{j} = -dx_{j} \wedge dx_{j} \\ dx_{i} \wedge dx_{i} = -dx_{j} \wedge dx_{i} \end{cases}$
Extending linearly, we get a bilinear map
 $\Lambda : \Lambda^{k}(\mathbb{R}^{n})^{\#} \times \Lambda^{d}(\mathbb{R}^{n})^{\#} \longrightarrow \Lambda^{k+\ell}(\mathbb{R}^{n})^{\#}$
 $(\omega, \gamma) \longmapsto \omega \wedge \gamma$

which is skew-commutative:

$$\omega \wedge \gamma = (-i)^{kl} \gamma \wedge \omega$$

and associative: $(\omega \wedge \gamma) \wedge \phi = \omega \wedge (\gamma \wedge \phi)$

E.g.)
$$W = a_1 dx_1 + a_2 dx_2$$

 $\eta = b_1 dx_1 + b_2 dx_2$
 $\omega \wedge \eta = (a_1 dx_1 + a_2 dx_2) \wedge (b_1 dx_1 + b_2 dx_2)$
 $= a_1 b_1 dx_1 \wedge dx_1 + a_1 b_2 dx_1 \wedge dx_2$
 $+ a_2 b_1 dx_2 \wedge dx_1 + a_2 b_2 dx_2 \wedge dx_2$
 $= (a_1 b_2 - a_2 b_1) dx_1 \wedge dx_2$
 $det (a_1 b_1)$
Differential Forms on iR^n
Notation : $I = (i_1, i_2, ..., i_k)$ increasing k-tuple.
A differential k-form on iR^n is an expression
 $W = \sum_{I=(i_1..., i_k)} f_I dx_1 \wedge ... \wedge dx_{i_k}$
 $I = (a_1 c_1 b_1)$
where f_I are smooth functions on (subset of) iR^n
E.g.) O-forms are just functions
1-forms: $W = f_1 dx_1 \wedge ... \wedge f_n dx_n$

.

n-forms:
$$\omega = f dx_{n-1} dx_{n}$$

Remark: We can take wedge product of differential forms pointwice as before. More importantly, we have a way to " differentiete " differenties forms Notation: $A^{k}(u) = \begin{cases} differential k-forms \\ on \ U \in \mathbb{R}^{n} \end{cases}$ Def": There exists an extensor derivative $d: \mathcal{A}^{k}(\mathcal{U}) \longrightarrow \mathcal{A}^{k+1}(\mathcal{U})$ S.t. (1) d is linear (2) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-i)^{k} \omega \wedge d\eta$ where $w \in \mathcal{A}^{k}(u), \eta \in \mathcal{A}^{2}(u)$ $(3) \quad d^2 = d \circ d = 0$ (4) $df = \tilde{\Sigma} \frac{\partial f}{\partial x} dx;$ ∀ function f Examples: (1) df = f'(x) dx, $\forall f: \mathbb{R} \rightarrow \mathbb{R}$ (2) $W = Y dx + x dy \in \mathcal{A}'(\mathbb{R}^2)$ dw = d(ydx) + d(xdy) = dyndx + dxndy = 0

(3)
$$\omega = -y \, dx + x \, dy \in \mathcal{A}^{1}(\mathbb{R}^{2})$$

$$d\omega = -dy \, dx + dx \, dy = 2 \, dx \, dy$$

$$(4) \quad \omega = -\frac{y}{x^{2} + y^{2}} \, dx + \frac{x}{x^{2} + y^{2}} \, dy \in \mathcal{A}^{1}(\mathbb{R}^{2} + \mathbb{N}^{2})$$

$$d\omega = -\frac{\partial}{\partial y} \left(\frac{y}{x^{2} + y^{2}}\right) \, dy \, dx + \frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}}\right) \, dx \, dy$$

$$= \left[\frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}}\right) + \frac{\partial}{\partial y} \left(\frac{y}{x^{2} + y^{2}}\right)\right] \, dx \, dy$$

$$= \left[\frac{(x^{2} + y^{2}) - 2x^{2}}{(x^{2} + y^{2})^{2}} + \frac{(x^{2} + y^{2}) - 2y^{2}}{(x^{2} + y^{2})^{2}}\right] \, dx \, dy$$

FACT: d generalize the notion of grad, curl and div. Given a function f on $U \subseteq \mathbb{R}^n$. $df = \frac{\partial f}{\partial X_1} dx_1 + \frac{\partial f}{\partial X_2} dx_2 + \dots + \frac{\partial f}{\partial X_n} dx_n$ Hence, writing the R.H.S. in terms of the basis $\{dx_1, dx_2, \dots, dx_n\}$ of A'(U). we have $df = (\frac{\partial f}{\partial X_1}, \frac{\partial f}{\partial X_2}, \dots, \frac{\partial f}{\partial X_n}) = \nabla f$

Therefore, $d: \mathcal{A}^{\circ}(\mathcal{U}) \rightarrow \mathcal{A}^{\prime}(\mathcal{U})$ is the gradient " differential operator on functions. Given a vector field $F: U \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, s.t. $F = (F_1, F_2, F_3)$ in components, if we identify it with the 2-form:

 $W = F_1 dyndz - F_2 dxndz + F_3 dxndy$ Then,

Similar calculation also works for vector fields in Rⁿ for any n E IN.

Finally, we can also recover the curl operator Using the extensor derivative d. Let $\omega = P dx + Q dy \in A'(\mathbb{R}^2)$. Then

$$d\omega = dP \wedge dx + dQ \wedge dy$$

= $\frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy$
= $\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$
2 dim'l curl
of F=(P,Q)

Let $W = F_1 dx + F_2 dy + F_3 dz \in \mathcal{A}^1(\mathbb{R}^3)$. Then $dW = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$ $= \frac{\partial F_1}{\partial y} dy \wedge dx + \frac{\partial F_1}{\partial z} dz \wedge dx$ $+ \frac{\partial F_2}{\partial x} dx \wedge dy + \frac{\partial F_2}{\partial z} dz \wedge dy$ $+ \frac{\partial F_3}{\partial x} dx \wedge dz + \frac{\partial F_3}{\partial y} dy \wedge dz$ $= (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}) dy \wedge dz + (\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}) dz \wedge dx$ $+ (\frac{\partial F_2}{\partial x} - \frac{\partial F_3}{\partial y}) dx \wedge dy$

whose components are equal to curl (F., F., F.).

Pullback of differential forms Given a C[®] map g: U & R^M -> IRⁿ, we can use it to "pullback" differential forms: $g^*: \mathcal{A}^{k}(\mathbb{R}^{n}) \longrightarrow \mathcal{A}^{k}(\mathcal{U})$ $O-forms: g^{*} f := f \circ g \quad \forall f \in \mathcal{A}^{\circ}(\mathbb{R}^{n})$ 1-forms: Write in components 3=(9,..., 9,). define $g^{*}(f, dx_{1} + \dots + f_{n} dx_{n})$ $= (f_1 \circ g) dg_1 + \dots + (f_n \circ g) dg_n$ $\frac{k-forms}{k}: \quad \Im^{*}(\Sigma f_{I} dx_{I}) = \Sigma (f_{I} \circ \Im) d\Im_{I}$ Let us illustrate by some examples. Examples : (1) $g: \mathbb{R} \to \mathbb{R}$, $g^{*}(-f(x)dx) = f(g(u))g'(u)du$ (2) $g: \mathbb{R} \to \mathbb{R}^2$. g(t) = (ust, sint)g''(-ydx+xdy) = -sint d(cost) + cost d(sint) $= (sin^2 t + los^2 t) dt = dt$

 $\forall \omega \in \mathcal{A}^{k}(\mathbb{R}^{n})$ Thm: $g^*(d\omega) = d(g^*\omega)$ Proof: k=0: let f e A (R). $d(9^{*}f) = d(f \circ g)$ $= \sum_{i=1}^{m} \frac{\partial}{\partial u_i} (f \cdot g) du_j$ $= \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}} \cdot g \right) \left[\sum_{i=1}^{m} \frac{\partial g_{i}}{\partial u_{i}} du_{j} \right]$ $= \sum_{i=1}^{n} \int_{\partial x_{i}}^{\pi} \frac{\partial f}{\partial x_{i}} \cdot \int_{\partial x_{i}}^{\pi} dx_{i}$ $= 9^{*} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} dx_{i} \right) = 9^{*} \left(\frac{df}{df} \right)$ k>0: By linearity, it suffices to check $S^{*}(d(fdx_{I})) = S^{*}(df \wedge dx_{I}) = S^{*}(df) \wedge S^{*}(dx_{I})$ $= d(S^{+}) \wedge dS_{I} = d(S^{+}dS_{I})$ $= d(S^{\dagger}(fdx_{T}))$

٥